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The problem of closing the Reynolds-stress and dissipation-rate equations at low 
Reynolds numbers is considered, specific forms being suggested for the direct 
effects of viscosity on the various transport processes. By noting that the correla- 
tion coefficient uv2/u2v2 is nearly constant over a considerable portion of the low- 
Reynolds-number region adjacent to a wall the closure is simplified to one 
requiring the solution of approximated transport equations for only the turbulent 
shear stress, the turbulent kinetic energy and the energy dissipation rate. 
Numerical solutions are presented for turbulent channel flow and sink flows at  
low Reynolds number as well as a case of a severely accelerated boundary layer 
in which the turbulent shear stress becomes negligible compared with the viscous 
stresses. Agreement with experiment is generally encouraging. 

- -- 

1. Introduction 
There is currently much activity in developing and refining so-called ‘second- 

order’ closures for turbulent flow. In  these schemes the Reynolds stresses - 
are obtained from an approximated set of transport equations containing only 
mean-field variables and second-order turbulence correlations, i.e. correlations 
of just two fluctuating quantities. The aim of this research area is to devise (in 
terms of the allowable correlations) sufficiently faithful imitations of the real 
processes affecting the transport of uiuj for the equations to provide a generally 
valid closure for determining the Reynolds stress. (Here ‘valid’ means offering 
sufficient accuracy for practical purposes.) 

Whether this aim can be completely achieved remains an open question. 
Systematic and extensive testing has so far been confined to thin shear flow 
(because the numerical task of solving the equations for more complicated flows 
is still not a light one). For these flows, a t  least, two of the recently proposed 
schemes, those of Lumley & Khajeh Nouri (1973) and Launder, Reece & Rodi 
(1975), do give reasonably correct predictions of for a range of flows. Both 
treatments, however, neglected any direct effect of viscosity on the turbulence 
structure. While viscous effects on the energy-containing turbulence motions are 
indeed negligible throughout most of the flow, the condition of no slip at  solid 
interfaces always ensures that in the immediate vicinity of a wall viscous effects 
will be influential, perhaps dominant. 

Although the thickness of this viscosity-affected zone is usually two or more 

- 
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orders of magnitude less than the overall width of the flow, its effects extend over 
the whole flow field since, typically, 50 % of the velocity change from the wall to 
the free stream occurs in this region. Now, it is possible to avoid the complications 
of the viscosity-affected region by drawing on the fact that, in many turbulent 
flows, the important mean and turbulent flow quantities are functions only of 
the normal distance from the wall (provided all variables are non-dimensionalized 
by the wall shear stress, the density and the fluid viscosity). Thus, in making 
calculations of flow over rigid surfaces all the dependent variables appearing in 
the closure scheme are matched to the ‘universal’ values at some point beyond 
the viscosity-dependent region. This approach has been followed in the work of 
Bradshaw, Ferriss & Atwell (1967), Hanjali6 & Launder (1972) and Launder et al. 
(1975) as well as in numerous simpler closures where the Reynolds stresses are 
uniquely related to the mean velocity field. 

The near-wall region is insufficiently universal, however, for the above 
approach to be satisfactory in all circumstances. Transpiration through the wall, 
steep streamwise pressure gradients, swirl (as, for example, near a spinning disk), 
and steep temperature gradients (due to large imposed wall heat fluxes or to 
frictional heating) are just a few of the influences that may cause this region to 
differ from its so-called ‘universal ’ behaviour. To account for these various 
influences it is necessary to extend the calculations up to the wall itself. 

This approach is commonplace when the mixing-length hypothesis or some 
other very rudimentary turbulence model is used. The ratio of mixing length to 
normal distance from the wall is held to be a function of a normal-distance 
Reynolds number x2 U*/v,  where the velocity scale U* is taken (according to 
taste) as either the local or the wall friction velocity (or sometimes a combination 
of the two). The functional relation is easily correlated by reference, say, to 
profiles of mean velocity in pipe flow, cf. Van Driest (1956). There have been 
similar approaches to extending Prandtl’s (1945) model (in which a transport 
equation is solved for the turbulence kinetic energy k) to the low-Reynolds- 
number regime. Here the work of Glushko (1965), Beckwith & Bushnell (1968) 
and Wolfshtein (1969) may be mentioned. Although models of this kind display 
adequately correct behaviour when the stress is essentially uniform near the wall, 
they achieve little improvement over the assumption of a universally similar near- 
wall region unless additional empirical modifications are made to the mixing 
length to account for effects of transpiration, pressure gradient, etc. 

Of course, a principal reason for devising a second-order closure for low- 
Reynolds-number turbulence is to provide a more reliable basis for calculating 
wall-bounded flows than is offered by the use of either ‘wall-law ’ matching or the 
mixing-length hypothesis. The present contribution reports our progress in this 
direction. The work has sought to extend the closure for high Reynolds numbers 
reported by Launder et al. (1975). However, to limit the sheer task of obtaining 
numerical solutions, we have simplified the model so that, for two-dimensional 
shear layers, the turbulent shear stress and the turbulence kinetic energy are the 
only Reynolds-stress elements calculated. The dissipation rate E of turbulence 
energy (which appears as an unknown in both the kinetic energy and shear-stress 
equations) is found from a transport equation similar to (though with important 
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differences from) that devised and tested by Jones & Launder (1972a, 1973). 
Applications are reported for grid turbulence in the final period of decay as well 
as for low-Reynolds-number channel flow and strongly accelerated boundary 
layers. 

2. Proposals for closure at low Reynolds numbers 
2.1. The stress transport equations 

For an incompressible turbulent flow the exact equation governing the transport 
of Reynolds stress uiui (see, for example, Hinze 1959, p. 250) may be written as 

- 

Dt 
(i) (ii) 

(iii) (iv) 

where the notation is the same as in Launder et al. (1975). That paper (LRR) 
made proposals for closing (2. I)  which led to satisfactory predictions of- (and 
of the mean flow field) in a number of thin shear flows at high Reynolds numbers. 
Here we adopt the same closure approximation’s as in LRR, extending them (and 
introducing additional ones where necessary) to account for low-Reynolds- 
number effects. 

The stress-generation terms may be treated exactly with a second-order 
closure; approximations are needed for terms (ii)-(iv). The pressure fluctuations 
that appear in term (ii) satisfy the equation 

obtained by taking the divergence of the equation of motion. Since the fluid 
viscosity makes no explicit appearance in (2.2) it  is assumed that, to first order, 
the high-Reynolds-number form of the pressure-strain correlation adopted in 
LRR may be retained, i.e. 

2 
where k and E are the turbulent kinetic energy and the correlation v(aui/axk) 
respectively, P is the rate of generation of turbulence energy by mean-strain 
effects, and 

-au. -aq. -(.i~kz+ZCjUgz). 
23 - ( ax, 3 “ax ,  p..=- UiUk-- I+U.U - 

Following LRR the coefficients c1 and c2 take the constant values 1.5 and 0.4. 
The term q5ij,w stands for a wall-proximity effect on the pressure-strain 

38-2 
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correlation, details of which appear in LRR. Close to a wall this term causes about 
30 % of the total turbulence energy to be transferred from the stress component 
normal to the wall, 2, to that in the direction of the mean flow, q. The direct 
effect on the shear stress is however rather small (there is an indirect effect 
due to the appearance of and 2 in the shear-stress equation); thus, since it is 
the shear stress which controls the mean velocity field, we neglect the term &., 21) 

entirely here. In  $3.2  we suggest a very simple way of accounting for the wall 
effects on the normal stresses. 

Turning to the diffusive transport terms in (2.1), the molecular transport of 
stress v auiuj/axj, which is negligible at  high Reynolds numbers, of course needs 
no further approximation. There seems no reason to suppose that viscous effects 
on the other diffusion terms should be small; indeed an examination of the trans- 
port equation for uiujuk suggests the contrary. However, it  seems safe to assume 
that for values of x i  down to about 15 the contribution of diffusive transport to 
the stress budget is barely significant, the main factors being the local stress 
generation and dissipation rates and the contribution of the pressure-strain term. 
Moreover, for values of x$ below about 8 molecular diffusion will progressively 
outweigh turbulent diffusion. It is clear, therefore, that a poor approximation of 
the turbulent transport terms will affect the stress profiles over only a small pro- 
portion of the viscous-affected region. We therefore retain the approximation 
proposed originally by Hanjalid & Launder (1972) and used in LRR: 

- 

Pressure transport was neglected by LRR. Though there is no certainty that 
these terms are negligible in the strongly inhomogeneous near-wall region, we 
again call on the principle of limited effectiveness used to support the use of (2.4); 
accordingly we take no account of this process. 

The one term in (2.1) where it is essential to include viscous effects is term (iv), 
the dissipative correlation. At sufficiently high Reynolds numbers the fine-scale 
motion will be essentially isotropic and hence 

As the Reynolds number approaches zero the energy-containing and dissipation 
range of motions overlap and the dissipation rate is then commonly approximated 
(for example, Rotta 1951) as 

These two asymptotic forms? have led a number of workers to propose that in 
general the correlation may be approximated as 

t Two referees have drawn attention to the fact that (2.6) does not have the status of 
an asymptotically valid relation, however. 
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where f, is a function of the turbulent Reynolds number RT = k2/ve; its value 
changes from unity to zero as the Reynolds number varies from zero to infinity. 
It would appear that, even if (2.7) is adequate, the function f, ought to depend 
also on the amount of mean strain felt by a typical dissipative eddy during its 
lifetime. For the straining will impart a directional orientation on the fine-scale 
structure which, in crude terms, will make the dissipation proceed more according 
to (2.6) than (2.5). Now, the lifetime of a dissipative motion is of the order of 
vie-* and the time taken for the mean flow to distort such an eddy appreciably is 
(aU,/ax,)-l. Thus the dimensionless parameter expressing the influence of mean 
strain on f, is (v/e)& aU,/ax, or, on regrouping, R&k aU,/ax2) E-,. 

The prospect of correlating a suitable form for f, in terms of both RT and 
R,*k(i3Ul/ax,) is a rather daunting one however. We have therefore taken no 
specific account of mean strain on f,. The perceived effect of (k aU,/ax,) 8-l will 
arguably be much weaker than that of RT :t for an equilibrium flow the former 
varies by only 20 yo or so about the value 3.5 in the range 10 < x$ < 50 whereas 
there will be about a fivefold variation of RT. The best form for f, that has 
emerged from the numerical computations presented in $4  is 

f, = (1 + &RT)-t, (2.8) 

which, it will be noted, takes the requisite limiting values for very high and 
very low RT. 

2.2. The equation for E transport 
Following Daly & Harlow (1970), an exact equation for the transport of E in a 
fluid of uniform viscosity is obtained by differentiating the equation of motion 
for ui with respect to zl and multiplying through by 2v auifaxp The result may be 
written as 

(ii) (iii) 

Tennekes & Lumley (1972, p. 90) have inferred from an order-of-magnitude 
analysis of (2.9)$ that, a t  high turbulent Reynolds numbers, terms (i) and (ii) 
(representing generation of E by stretching of vortex filaments and destruction 
through the tendency of viscosity to reduce instantaneous velocity gradients) far 
outweigh all other terms; their difierence, however (which is what matters), is 
ordinarily of the same magnitude as the diffusive transport terms (iii). Terms (iv) 
and (v) are smaller than the other terms by a factor proportional to Rb and R, 
respectively; at high Reynolds numbers, therefore, these may be omitted, 
together with the viscous diffusion term in (iii). 

adjacent to a wall. 
t Provided that attention is limited to cases where the low-Reynolds-number region is 

$ Or, rather, of the closely related equation for the square of the vorticity fluctuations. 
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The following analogue form of (2.9) has been used to calculate a number of 
high-Reynolds-number flows (see Reynolds 1970; Hanjali6 & Launder 1972; 
LRR) : 

k ax, a (“-7 E l & *  

6 €2 
- c e l - P - c , 2 - - c , -  -u u 

DS 
Dt- k (2.10) 

The first two terms on the right of (2.10) approximate the difference between 
terms (i) and (ii) of (2.9)t while the third represents diffusive transport. Lumley 
(1972) omitted the first term in (2.10) on the grounds that the terms in (2.9) con- 
taining mean-field variables were all of lower order. The analogue equation clearly 
needs to contain some positive source term however; otherwise one could arrange 
to increase indefinitely the level of turbulence energy by straining the turbulence 
field while the dissipation rate decreased monotonically. Lumley & Khajeh Nouri 
(1973) have argued that the quantity (uiuj/k - @ii)2 E should appear in 
place of P. It does seem more reasonable that the small imbalance between (i) and 
(ii) in (2.9) should be affected by the skewness of the energy-containing motions 
rather than by the mean field directly. However, i t  is the presence of mean strain 
which causes the anisotropy and, except where transport effects on turbulence 
are large, (uiujlk - +&)2 and PIE vary in much the same way throughout a turbu- 
lent flow. Thus, since (2.10) has been extensively tested in numerical computa- 
tions it has been adopted as the high-Reynolds-number asymptote in the present 
work. 

- 

- 

In  a homogeneous decaying turbulent flow (2.10) becomes simply 

DEIDt = - C ~ , E ~ / ~ .  (2.11a) 

It is easily shown that (2.11) causes the kinetic energy to decay at a rate propor- 
tional to x - ~ ,  where n = (cEZ- l)-l. At high Reynolds numbers the extensive 
grid-turbulence data of Comte-Bellot & Corrsin (1966) indicate the exponent n 
to be about 1.2, suggesting that cE2 should be approximately 1.8. Far behind the 
grid the decay pattern undergoes a rather abrupt change: the exponent n 
increases to an asymptotic value of 2-5. We assume that this variation is due 
entirely to the diminution of R, and hence write, in general, 

DefDt = -c,2fEt?/k, ( 2 . l l b )  

where f, is a function of R,, taking the value unity a t  high Reynolds number. The 
form of dependence is chosen by reference to Batchelor & Townsend’s (1948) 
lowest-Reynolds-number data. The variation of turbulence Reynolds number 
with x shown in figure 1 was obtained by solving (2.11 b )  and the turbulence energy 
equation with f, taking the form 

0-4 
1.8 

f, = 1.0 - -exp [ - (QRT)2]. (2.12) 

The corresponding graph of turbulence energy decay is shown in figure 2. In  both 
cases agreement with experimental data is close (as it should be since this is the 
basis for choosing f,). 

in (2.10) are independent of RT while those in (2.9) are not. 
t The individual terms in the two equations should obviously not be paired since those 
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X l M  

FIGURE 1.  Variation of turbulent Reynolds number with distance behind grid: comparison 
of predictions with Batchelor & Townsend’s (1948) experiments. predictions: -, 
R e M  = 650; -. -, ReM = 1360. Experiment: 0 ,  ReM = 650; 0, R e M  = 1360. 

- 500 0 500 1000 1500 

X l M  

FIGURE 2.  Decay of turbulent energy behind grid. -, predictions; ---, final-period 
asymptote; 0 ,  experiment, Batchelor & Townsend (1948), R e M  = 650. 
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The decay term in the dissipative equation requires some further modification 
before it can be used in the vicinity of a wall. The correlation E takes a non-zero 
value at the wall while k vanishes; thus the quantity s2/k tends to infinity, evi- 
dently an unacceptable outcome. The difficulty is removed by replacing €2 by EE, 
where the quantity B is defined as 

B = - zV (akq/axl)2. (2.13) 

The appendix shows that B varies as xi in the vicinity of the wall. Thus chzeB/k 
tends to a constant value since k also varies as xg. 

Now, in (2.9) the viscous diffusion term va2s/ax; is the only term apart from 
(i) and (ii) which does not vanish at  the wall. Moreover, the rough estimates of E 

that  can be deduced from experiment (e.g. Laufer 1954) suggest that the dissipa- 
tion rate varies by only about a factor of two between the wall and the position 
of its maximum value (at x$ 1: 10); beyond this it quickly displays the x;l decay 
typical of fully turbulent flows near walls. These are hopeful signs because they 
indicate that the terms in (2.9) that are so far unaccounted for, and for which no 
measurements are available, exert collectively a fairly secondary influence. The 
absence of experimental data precludes any serious attempt at modelling these 
terms individually. It was felt however that the following approach to closing 
(2.9) at least retained the correct character of the unknown correlations. 

(i) The effects of term (iv) in (2.9), comprising the product of mean velocity 
gradients and dissipative components, were accounted for by letting-the coeffi- 
cient cel in (2.10) become a function of R,. 

(ii) The other mean-field generation process, term (v), was approximated as 

(2.14) 

a form which is suggested by Taylor’s (1915) vorticity-transport theory. 
(iii) Any viscous effects on the diffusion terms were accommodated by allowing 

c, to be Reynolds-number dependent. 
The precise forms for the above terms were optimized to give best agreement 

with the turbulence energy profile for values of x$ up to about 40. The technique 
was to solve simultaneously the kinetic energy and B equations for a uniform- 
stress wall flow, supplying experimental values for the mean velocity and the 
Reynolds stresses. As it  turned out, these calculations showed that use of (2.14) 
alone (i.e. with the coefficients of the generative and diffusive terms in (2.10) 
taking their constant high-Reynolds-number values) could reduce differences 
between the calculated and measured energy profiles within experimental uncer- 
tainty. Accordingly ccl and c, were thereafter taken as constant. The final appear- 
ance of the E equation ia similar to one for E developed by Jones & Launder 
(1972a). There is an important difference between the wall boundary conditions 
however: B vanishes a t  the surface whereas E is finite and its gradient zero. 

2.3. A simpler version for thin shear layers 

In  thin shear layers only the shear stress significantly affects the mean flow. The 
possibility thus arises of devising a simpler procedure for calculating the normal 
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stresses, thus reducing the task of numerical solution. Hanjali6 & Launder (1 972) 
adopted such an approach for high-Reynolds-number flows, assuming each of the 
normal stresses to be proportional to the turbulence energy and thus reducing by 
two the number of transport equations to be so1ved.t Precisely the same assump- 
tion cannot be made here because q / k  falls to zero as the wall is approached. 
There is, however, an equally simple alternative. The experiments of Laufer 
(1954), Eckelmann (1970) and others indicate that the correlation coefficient 
-/(ul ui)h takes a constant value of about 0.47 not only over the fully turbulent 
region but over a considerable portion of the low-Reynolds-number region as 
well.$ Moreover, it is known that $(ul + ui) is a close approximation to the turbu- 
lent kinetic energy, again over the great majority of the flow. From these two 
facts (and with minor simplification to remove the nonlinear term in 2) we 

(2.15) 
deduce that 

ui N 4 * 0 ~ , u , ~ / k .  

Now, the shear-stress equation that results from the proposals made in $2.1 

_ _  

- -  

- - 

takes the following form in a two-dimensional thin shear flow: 

- - 

In  (2.16) the first term on the right represents diffusive transport, the second the 
turbulence-interaction part of the pressure-strain correlation and the low- 
Reynolds-number part of the dissipation while the third group of terms contains 
the net effect of shear production and the mean-strain part of the pressure-strain 
correlation. The diffusion term has only a minor effect on predictions. For this 
reason we neglect the second part of the diffusion term involving gradients in Go; 
the term is considerably smaller than the primary diffusion term except in the 
neighbourhood of the maximum shear stress, where in any event stress diffusion 
will usually be of negligible importance. If u”; and 2 are now eliminated as 
described above from the first and third terms in (2.16) the following equation 
for the shear stress emerges: 

DW a U l  UZ - Dt = ax2 - ( c l + f s l ) ~ ~  

- f s 1 [ i - 4 0 ( ~ / k ) 2 +  0.031 k au,/ax,. (2.17) 

The coefficient f s 2  in (2.17) should strictly be unity. Initial computations indi- 
cated that then the stress-creation term appeared to be somewhat too large in the 

t The transport equation for turbulence energy replaced the equations for the three 
normal stresses. 

$ The correlation coefficient is not constant, of course, near an axis of symmetry for the 
shear stress then falls to zero while 2 and ui do not. We nevertheless retain the approxima- 
tion there for the sake of uniformity. Because the shear stress is necessarily small there the 
numerical solutions are not significantly impaired by this assumption. 

- 

J This neglect simplifies the task of numerical solution. 
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Equation of f i s t  
Value appearance Basis for choice 

0.11 (2.4) 
1.50 (2.3) 
0.40 (2.3) 
0.15 (2.10) 
1.8 (2.10) 

c,2 - 36c, (2.10) 

1 Values used by LRR 
in high-Reynolds- 
number turbulence 

Decay of grid turbulence 
Consistency with 
von KArmBn constant 
of 0.42 (see LRR) 

computer optimization 
2.0 (2.14) Present work : 

TABLE 1. Coefficients in model of turbulence 

Function Form First appearance 

f Sl (1 +i@T)-l (2.7) 
f 82 exp r - 2 / (  1 + 35RT)I (2.17) 

f€ 1 - !?! 1.8 [exp - (37 (2.12) 

TABLE 2. Reynolds-number functions in turbulence model 

immediate neighbourhood of the wall, owing perhaps to the diminution of the 
shear-stress correlation coefficient in this region. Accordingly Reynolds-number- 
dependent forms for fs2 were explored, the one finally adopted appearing in 
table 2. 

The corresponding turbulence kinetic energy equation, obtained by con- 
tracting the closed form of the Reynolds-stress equation and simplifying the 
diffusion term as in (2.17), may be written as 

(2.18) 

To complete closure, the quantity is determined from the following transport 
equation, obtained by eliminating 2 from the diffusion term in (2.10) and from 
the right side of (2.14): 

(2.19) 

The empirical constants (the c’s) and the Reynolds-number functions (the f ’9) 

appearing in the above equations are prescribed as in tables 1 and 2. 
The computed results presented in $ 3  have been obtained by solving (2.17)- 

(2.19) simultaneously with the streamwise momentum and continuity equations. 
A modified version of the finite-difference procedure of Patankar & Spalding 
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10 100 1000 10000 

4 
FIGURE 3. Mean velocity profiles in plane channel flow. -, predictions. Experiment: A, 

Patel & Head, Re = 1530; 0 ,  Patel & Head, Re = 1835; 0, Eckelmann, Re = 5600. 

(1970) was developed for this purpose. Ninety cross-stream nodes were used 
with approximately half of these covering the  region between the wall and 
x$ 21 40. Forward step sizes were typically 0.2 times the local shear-layer thick- 
ness, leading to computing times per run of about 50 s using a CDC 6600 computer. 

3. Presentation of results 
At high Reynolds numbers the present turbulence model reduces to a form 

similar to that already proposed and tested by Hanjalid & Launder (1972). Here, 
therefore, attention is directed mainly to low-Reynolds-number flows, especially 
under conditions where departure from the usual wall similarity laws occurs. The 
first class of shear flows examined was fully developed flow in a plane channel of 
width D. In  figure 3 dimensionless mean velocity profiles are shown in the usual 
semi-logarithmic co-ordinates compared with the experimental data of Patel & 
Head (1969) and Eckelmann (1970). The numerical predictions correctly display 
the shift of the velocity profiIes progressively above the ‘universal’ semi- 
logarithmic law as the Reynolds number is reduced. Quantitative agreement is 
quite good though it looks as though the predicted ‘effective viscosity’ is some- 
what too low in the core region of the channel since the predicted profiles lie 
above the measured ones. The predicted profile at Re = 1560 is in fact laminar; 
repeated attempts to establish a non-trivial solution to the turbulence transport 
equations (using a variety of initial conditions) all led to the turbulence decaying 
progressively with distance downstream. Eckelmann measured the turbulent 
shear-stress profiles a t  two Reynolds numbers; in figure 4 agreement with his 
data is seen to be virtually complete. Also shown is the predicted profile for 
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0 

FIGURE 4. (a)  Shear-stress and (b )  turbulent energy profiles in a plane channel. ---, predic- 
tions. Experiment (Eckelmann 1970): +, -.-, Re = 8200; 0, ---, Re = 5600. 

a bulk-flow Reynolds number of 1835 (which corresponds to one of Pate1 & Head’s 
experiments shown in figure 3). It is interesting to note that here the peak level of 
turbulent shear stress is less than 40% of the wall stress. The corresponding 
turbulence energy profiles are shown in figure 4 (b ) .  Eckelmann did not measure 
uE and the experimental curves were obtained by assuming that k = #(%+G). 
The predictions do not match the very steep rise in k close to the wall, predicted 
peak energy levels being 30 yo too low. Elsewhere however agreement is probably 
satisfactorily close. 

The near-wall shear-stress and turbulence kinetic energy profiles are shown in 
greater detail in figure 5.  It may be seen that the predicted turbulence energy 

- 
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FIGURE 5 .  Near-wall variation of shear stress and kinetic energy. - , predictions. 
Experiment: 0, Laufer (1954), pipe flow, Re = 5 x lo6; A ,  Eckelmann (1970), Re = 5600; 
+, Eckelmann (1970), Re = 8200; 0, Schubauer (1954),flat plate. 

varies as xiz for values of xi up to about 5. The asymptotic value appears to be 
about 30 yo larger than that estimated by Townsend (1956, p. 220) from Laufer’s 
(1954) pipe flow measurements, which suggests that this discrepancy is probably 
less than possible experimental error. The continuity equation may be used to 
show that asymptoticallyE& varies at least as xi3. The predicted variation does 
display a cubic variation but only for values of xi below unity. The calculated 
variation lies well above the formula u,U,+ = 6 x l O - 4 ~ , + ~  suggested by Townsend 
(1956) on the basis of extrapolating Laufer’s (1954) pipe flow data. By way of 
contrast Eckelmann’s data scatter above the predicted line for xi < 5, so it is 
probably fair to say that the present predictions lie within experimental uncer- 
tainty. The matter is, in any event, rather academic since over the region in 
question molecular stress far outweighs the turbulent stress. 

We turn now to the accelerating sink-flow boundary layers studied by Jones & 
Launder (1972 b) .  Figure 6 compares the predicted profiles for this self-preserving 
flow with the velocity profile measured at  the h a 1  station. As in the case of low- 
Reynolds-number channel flow, the mean velocity profile lies well above Patel’s 
law-of-the-wall line. The current model achieves satisfactory agreement with 
measurement except within the range 20 < xi < 90. The predicted solution lacks 
the knuckle that is present in the measurements or, in other words, the computed 
profile exhibits too gradual a changeover from a viscoue behaviour near the wall 
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FIGURE 6. Sink-flow turbulent boundary layer; (v/U&J dU,,/dx = 1.5 x los. -, present 
predictions; 0 ,  experiment, Jones &Launder (1972b);  ---, predictions, Jories (1971). 

to fully turbulent behaviour in the outer region. Also shown in figure 6 is Jones’ 
(1971) prediction of the same set of experimental data. The model used for his 
computations was similar in some respects to the present one (transport equations 
being solved for k and E )  except that the turbulent-viscosity hypothesis was used 
in place of a shear-stress equation (see Jones & Launder 1972a). The velocity 
profile generated by this model also predicts the departure of the profile above 
the semi-logarithmic line but generally the profile shape is less accurately 
predicted than with the present model. 

The final comparisons are drawn with another accelerating flow experiment 
(Launder 1964) only unlike the previous example, the flow is now by no means 
self-preserving. A flat-plate boundary layer is subjected to a severe acceleration? 
which increases the free-stream velocity by 2.6 : I ;  thereafter the flow develops 
in essentially uniform pressure. Figure 7, which shows the variation of the shape 
factor through the test section, provides a summary of the changes in the 
boundary-layer structure that take place. The initial fall in the shape factor H is 
typical of the behaviour of accelerated turbulent boundary layers; the sharp rise 
in H is associated with the reversion of the boundary layer to a viscous one; and 
the equally sharp fall in shape factor is due to a reversion of the flow to turbulent 
some distance downstream from the acceleration. In  this case the predicted flow 
behaviour is fairly sensitive to the initial profiles of k: and E ,  neither of which were 
measured in the experiment. To convey an impression of the influence of such 

t The maximum level of v/U:,(dU,,/dz) (U,, being the free-stream velocity) is approxi- 
mately 3 x in the sink-flow experiment shown in figure 6. compared with 1.5 x 
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FIGURE 7. Non-equilibrium, strongly accelerating boundary layer: comparison of predic- 
tions (curves) with measurements of Lmnder (1964; points) for different initial conditions. 

uncertainties three sets of predictions are shown in figure 7, providing a moderate 
range of plausible initial values. The acrobatfc behaviour of the shape factor is 
quite well mirrored by these predictions. From these comparisons it is clear that 
the numerical computations do indeed produce broadly the same behaviour as 
displayed by the experiment. More than that cannot yet be claimed for if the 
precise initial conditions were known it is possible that these would lead to worse 
agreement than is shown in figure 7. 

4. Concluding remarks 
The present work has attempted to develop a second-order closure scheme for 

the region of low-Reynolds-number turbulence adjacent to a wall, the starting 
point being the high-Reynolds-number form of LRR. The rigour achieved is not 
entirely even: the closure of the dissipation equation has had to rely on more 
directly empirical inputs than that for the stress equations. However, the same 
difficulty exists even a t  high Reynolds numbers. An encouraging level of agree- 
ment with experiment has been obtained in a number of flows where the region 
of low-Reynolds-number turbulence is especially influential. In  particular the 
model predicts the sink-flow boundary layer more accurately than the similar but 
simpler model of Jones & Launder (1972a), presumably because the latter, 
through the use of the turbulent-viscosity concept, neglects convective transport 
of shear stress. 

The present closure makes two further improvements on that earlier model. 
The first is the use of an equation for E rather than B. The second and funda- 
mentally more important one is connected with the use of (2.15) to eliminate 3. 
The model of Jones & Launder, in common with virtually every other proposal 
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for treating the near-wall regions, implicitly assumes proportionality of 2 and k .  
As remarked in Q 2,  however, the ratio %/k: in fact diminishes progressively as the 
wall is approached. This inherent weakness passes unnoticed because of the 
necessity (as in the present work) of allowing a Reynolds-number dependence to 
appear in some terms; the variation of G / k  simply gets absorbed in the empirical 
Reynolds-number function or functions. However, a legacy of this arrangement 
is that direct viscous influences on turbulence are deemed to extend to Reynolds 
numbers many times higher than in free flows. By contrast, in the present model, 
the function fc (devised by reference to the final period of decay of grid turbulence) 
acts over about the same range of R, as does f,, the Reynolds-number-dependent 
function in the stress equation. 

Finally, a cautionary note needs to  be sounded. The current proposals relate 
only to regions of low-Reynolds-number turbulence adjacent to a wall. It would 
not be appropriate to apply the present closure to low-Reynolds-number 
phenomena in free shear flows. 
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Appendix 

be expressed as 
In  the immediate vicinity of a wall the fluctuating velocity components may 

(A 1) i 
u1 = a,x,+a,x$+ ..., 
u, = b,xZ + ...) 
u3 = c,x,+c,x; + ...) 

where the a’s, b’s and c’s are functions of xl, x3 and t with average value zero. 
From (A 1) i t  is readily deduced that the turbulence kinetic energy near a wall 
varies according to 

k = *(a; + c:) xi + (w + G) xi + O r ~ ] .  

For compactness replace t(2 + c?) by a2 and ( a 7 ,  + v,) by b. Thus we infer 

from which it is easily demonstrated that 

- -  

ka = axz( 1 + - $ b ~ ~ - ~ x ,  + . . .0[4]), 

(aka/&,)2 = a2 + 2bx, + O[Z~]. (A 2) 
Turning now to the dissipative correlation, use of (Al )  retaining first- and 
second-order terms gives 

B / V  = (aug/ax$ = (a:+ c:) + 4(a,a, + clcz)xz + O[x3, 
- -  _ -  

or B = 2va2 + 4 v b q  + Orx3. (A 3) 
We thus conclude from (A 2 )  and (A 3) that the ‘isotropic ’ part of the dissipation 
rate, E“ = B - 2~(ak*]ax,)~, varies as xi in the neighbourhood of the wall since the 
leading terms in these two equations cancel. 
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